skip to main content


Search for: All records

Creators/Authors contains: "Ritsema, Jeroen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Although the Brune source model describes earthquake moment release as a single pulse, it is widely used in studies of complex earthquakes with multiple episodes of high moment release (i.e., multiple subevents). In this study, we investigate how corner frequency estimates of earthquakes with multiple subevents are biased if they are based on the Brune source model. By assuming complex sources as a sum of multiple Brune sources, we analyze 1640 source time functions of Mw 5.5–8.0 earthquakes in the seismic source characteristic retrieved from deconvolving teleseismic body waves catalog to estimate the corner frequencies, onset times, and seismic moments of subevents. We identify more subevents for strike-slip earthquakes than dip-slip earthquakes, and the number of resolvable subevents increases with magnitude. We find that earthquake corner frequency correlates best with the corner frequency of the subevent with the highest moment release (i.e., the largest subsevent). This suggests that, when the Brune model is used, the estimated corner frequency and, therefore, the stress drop of a complex earthquake is determined primarily by the largest subevent rather than the total rupture area. Our results imply that, in addition to the simplified assumption of a radial rupture area with a constant rupture velocity, the stress variation of asperities, rather than the average stress change of the whole fault, contributes to the large variance of stress-drop estimates. 
    more » « less
  2. Abstract

    The upper boundary of the mantle transition zone, known as the “410-km discontinuity”, is attributed to the phase transformation of the mineral olivine (α) to wadsleyite (β olivine). Here we present observations of triplicated P-waves from dense seismic arrays that constrain the structure of the subducting Pacific slab near the 410-km discontinuity beneath the northern Sea of Japan. Our analysis of P-wave travel times and waveforms at periods as short as 2 s indicates the presence of an ultra-low-velocity layer within the cold slab, with a P-wave velocity that is at least ≈20% lower than in the ambient mantle and an apparent thickness of ≈20 km along the wave path. This ultra-low-velocity layer could contain unstable material (e.g., poirierite) with reduced grain size where diffusionless transformations are favored.

     
    more » « less
  3. SUMMARY

    Long-period (T > 10 s) shear wave reflections between the surface and reflecting boundaries below seismic stations are useful for studying phase transitions in the mantle transition zone (MTZ) but shear-velocity heterogeneity and finite-frequency effects complicate the interpretation of waveform stacks. We follow up on a recent study by Shearer & Buehler (hereafter SB19) of the top-side shear wave reflection Ssds as a probe for mapping the depths of the 410-km and 660-km discontinuities beneath the USArray. Like SB19, we observe that the recorded Ss410s-S and Ss660s-S traveltime differences are longer at stations in the western United States than in the central-eastern United States. The 410-km and 660-km discontinuities are about 40–50 km deeper beneath the western United States than the central-eastern United States if Ss410s-S and Ss660s-S traveltime differences are transformed to depth using a common-reflection point (CRP) mapping approach based on a 1-D seismic model (PREM in our case). However, the east-to-west deepening of the MTZ disappears in the CRP image if we account for 3-D shear wave velocity variations in the mantle according to global tomography. In addition, from spectral-element method synthetics, we find that ray theory overpredicts the traveltime delays of the reverberations. Undulations of the 410-km and 660-km discontinuities are underestimated when their wavelengths are smaller than the Fresnel zones of the wave reverberations in the MTZ. Therefore, modelling of layering in the upper mantle must be based on 3-D reference structures and accurate calculations of reverberation traveltimes.

     
    more » « less
  4. SUMMARY A number of seismological studies have indicated that the ratio R of S-wave and P-wave velocity perturbations increases to 3–4 in the lower mantle with the highest values in the large low-velocity provinces (LLVPs) beneath Africa and the central Pacific. Traveltime constraints on R are based primarily on ray-theoretical modelling of delay times of P waves (ΔTP) and S waves (ΔTS), even for measurements derived from long-period waveforms and core-diffracted waves for which ray theory (RT) is deemed inaccurate. Along with a published set of traveltime delays, we compare predicted values of ΔTP, ΔTS, and the ΔTS/ΔTP ratio for RT and finite-frequency (FF) theory to determine the resolvability of R in the lower mantle. We determine the FF predictions of ΔTP and ΔTS using cross-correlation methods applied to spectral-element method waveforms, analogous to the analysis of recorded waveforms, and by integration using FF sensitivity kernels. Our calculations indicate that RT and FF predict a similar variation of the ΔTS/ΔTP ratio when R increases linearly with depth in the mantle. However, variations of R in relatively thin layers (< 400 km) are poorly resolved using long-period data (T > 20 s). This is because FF predicts that ΔTP and ΔTS vary smoothly with epicentral distance even when vertical P-wave and S-wave gradients change abruptly. Our waveform simulations also show that the estimate of R for the Pacific LLVP is strongly affected by velocity structure shallower in the mantle. If R increases with depth in the mantle, which appears to be a robust inference, the acceleration of P waves in the lithosphere beneath eastern North America and the high-velocity Farallon anomaly negates the P-wave deceleration in the LLVP. This results in a ΔTP of about 0, whereas ΔTS is positive. Consequently, the recorded high ΔTS/ΔTP for events in the southwest Pacific and stations in North America may be misinterpreted as an anomalously high R for the Pacific LLVP. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    Seismology provides important constraints on the structure and dynamics of the deep mantle. Computational and methodological advances in the past two decades improved tomographic imaging of the mantle and revealed the fine-scale structure of plumes ascending from the core-mantle boundary region and slabs of oceanic lithosphere sinking into the lower mantle. We discuss the modeling aspects of global tomography including theoretical approximations, data selection, and model fidelity and resolution. Using spectral, principal component, and cluster analyses, we highlight the robust patterns of seismic heterogeneity, which inform us of flow in the mantle, the history of plate motions, and potential compositionally distinct reservoirs. In closing, we emphasize that data mining of vast collections of seismic waveforms and new data from distributed acoustic sensing, autonomous hydrophones, ocean-bottom seismometers, and correlation-based techniques will boost the development of the next generation of global models of density, seismic velocity, and attenuation. ▪  Seismic tomography reveals the 100-km to 1,000-km scale variation of seismic velocity heterogeneity in the mantle. ▪  Tomographic images are the most important geophysical constraints on mantle circulation and evolution. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)
    SUMMARY The method of ScS reverberation migration is based on a ‘common reflection point’ analysis of multiple ScS reflections in the mantle transition zone (MTZ). We examine whether ray-theoretical traveltimes, slownesses and reflection points are sufficiently accurate for estimating the thickness H of the MTZ, defined by the distance between the 410- and 660-km phase transitions. First, we analyse ScS reverberations generated by 35 earthquakes and recorded at hundreds of seismic stations from the combined Arrays in China, Hi-NET in Japan and the Global Seismic Network. This analysis suggests that H varies by about 30 km and therefore that dynamic processes have modified the large-scale structure of the MTZ in eastern Asia and the western Pacific region. Second, we apply the same procedure to spectral-element synthetics for PREM and two 3-D models. One 3-D model incorporates degree-20 topography on the 410 and 660 discontinuities, otherwise preserving the PREM velocity model. The other model incorporates the degree-20 velocity heterogeneity of S20RTS and leaves the 410 and 660 flat. To optimize reflection point coverage, our synthetics were computed assuming a homogeneous grid of stations using 16 events, four of which are fictional. The resolved image using PREM synthetics resembles the PREM structure and indicates that the migration approach is correct. However, ScS reverberations are not as strongly sensitive to H as predicted ray-theoretically because the migration of synthetics for a model with degree-20 topography on the 410 and 660: H varies by less than 5 km in the resolved image but 10 km in the original model. In addition, the relatively strong influence of whole-mantle shear-velocity heterogeneity is evident from the migration of synthetics for the S20RTS velocity model and the broad sensitivity kernels of ScS reverberations at a period of 15 s. A ray-theoretical approach to modelling long-period ScS traveltimes appears inaccurate, at least for continental-scale regions with relatively sparse earthquake coverage. Additional modelling and comparisons with SS precursor and receiver function results should rely on 3-D waveform simulations for a variety of structures and ultimately the implementation of full wave theory. 
    more » « less